总结了 >工作计划

小数教教案模板5篇

编写教案是教师对教学过程进行有效控制的重要手段,优秀的教案能够根据学生的学习需求和兴趣进行教学内容的合理拓展和延伸,下面是总结了小编为您分享的小数教教案模板5篇,感谢您的参阅。

小数教教案模板5篇

小数教教案篇1

教学内容

教材第40~42页。

教学目标

1.在具体的情境中,经历探究比较小数大小的方法的过程,体验解决问题策略的多样化,并能掌握用小数大小比较的一般方法来解决身边的实际问题的技巧。

2.在独立自主、合作交流的活动中,培养了学生猜想、验证、比较、概括的思维能力。

3.进一步体会数学与生活的联系,激发学生学习数学的兴趣。

教学重点

探究并概括小数大小比较的一般方法。

教学难点

正确运用小数大小比较的方法,熟练地比较小数的大小。

教学过程

一、情境导入

1.前两天老师到商场逛了逛,带来了一些信息,我们一起来看一看好吗?(课件出示)

海尔小冰箱895元美的冰箱1199元

容声冰箱1725元

请同学们选择两种冰箱比一比,谁贵谁便宜?

2.引导学生总结比较整数大小的方法。

二、探究新知

1.创设情境。

课件出示教材第40页例5情境图以及学生跳远成绩统计表。

从图上你了解到了哪些信息?

师生交流后明确四位同学跳远的成绩。

2.合作探究。

(1)提出问题:你能在小组内给他们排出名次吗?

组织学生进行组内交流,再汇报展示。

(2)汇报展示。

师生交流后明确:小明排第一,小军排第二,小莉排第三,小红排第四。

师:你是如何排出他们的名次的?

学生反馈后明确:

先比较整数部分:四个数据的整数部分中,三个数的整数部分都是2,3.05的整数部分是3,3大于2,所以小明排第一。

然后比较小数部分:因为剩余的三个数的整数部分相同,所以比较十分位上的数。2.93的十分位上是9,其余的两个数的十分位上都是8,所以小军排第二。

最后比较百分位上的数,在剩余的两个数中,因为它们的整数部分和十分位上的数都相同,所以要比较百分位上的数。2.88百分位上的8大于2.84百分位上的4,所以小莉排第三,小红排第四。

板书:3.05 m>2.□□ m

2.8□ m ○2.93 m

2.88 m ○ 2.84 m

先比较整数部分,整数部分相同,就比较十分位。十分位相同,就比较百分位。

(3)回顾:我们刚才是怎样进行小数的大小比较的?把你的想法跟你的同桌交流一下。

比较两个小数的大小,先比较整数部分,整数部分大的那个数就大;整数部分相同的,再比较十分位上的数,十分位上的数大的那个数就大;十分位上的数也相同,就比较百分位上的数,百分位上的数大的那个数就大……

(4)根据分类,可以得出小数大小比较的方法。

学生讨论,总结归纳方法:

①如果整数部分不相同,如何比?

先看它们的整数部分,整数部分大的那个数就大。

②如果整数部分相同,又如何比?十分位又相同呢?

整数部分相同时,看十分位,十分位上的数字大的那个数就大;十分位上的数字也相同时,百分位上的数字大的那个数就大……依次类推。

师:试一试。比较刚才列举的数据,然后试着把这四位选手的名次排一排,并说说你是怎样排的。

三、巩固练习

1.完成教材第40页“做一做”。

(教师在4.723○4.79处质疑:按照整数比较大小的方法,位数越多,这个数就越大,4.723○>4.79对吗?为什么?使学生明确,比较小数大小时,位数多的小数不一定就大)

2.完成教材第42页“练习十”第7题。

3.几个同学立定跳远的成绩是:小军1.56 m;小强1.6 m;小平1.52 m;小云1.48 m。把前三名的名字写在领将台上。

4.请同学们拿出数字卡“7”“4”“8”和小数点卡“.”,同桌合作,任意组成3个小数,然后将它们按从大到小的顺序排列起来。

5.甲、乙、丙、丁四个人的身高分别是1.46 m、1.52 m、1.38 m、1.5 m。已知:甲比丁高,但又比丙矮,丁比乙矮,甲比乙高。你知道甲、乙、丙、丁四个人各是多高吗?

四、课堂小结

请同学们说一说这节课你的收获。

本节课你对自己的表现是否满意?应该改进的地方有哪些呢?

板书设计

小数的大小比较

3.05>2.84 2.88<2.93 2.84<2.88

先看整数部分整数部分相同整数部分和十分位

比较十分位都相同,再比较百分位

教后思考

学生在三年级就已经学习了一位小数大小的比较,对比较的方法有一定感知。教师要充分利用这些有利的条件,给学生创设自主探索的空间,让学生根据已有的知识经验尝试比较小数的大小,激发新旧知识之间的联系。这节课,学生思考的角度已经从“具体量”拓展到“数位、计数单位与计数单位的个数”等知识。教学时要深入知识的本质,使学生不仅知其然,更知其所以然。整数大小比较的方法中“位数多,数就大”,往往会在小数大小比较的时候产生负迁移。教学中采用“翻卡片”的活动,充分调动学生学习的积极性,激活思维,引发学生在比较小数的大小时自然关注数位而不是位数,既突破了学习难点,又巧妙地沟通了新旧知识之间的联系。

小数教教案篇2

课题:笔算小数加法

内容:实验教材三年级下册p95页的内容

教学目标:

1、使学生初步掌握小数加法的计算方法。

2、通过对比小数加法与整数加法的相同点以加深学生对小数加法的理解。

重点:掌握小数的加法计算方法

教学过程:

一、复习导入新课。

列竖式计算下面各题,并说一说做整数加法时要注意什么? 74+28 51+62

(小结时,突出“相同数位对齐,从个位加起。”)

二、新课:

1、设计购物情景图。学习小数的加法计算。

从画面中你知道了什么信息?

你想购买哪些商品?它们的价格分别是多少元?

你最少选择购买两种商品,请你计算一下你一共用去了多少元钱?

计算结束之后说给同桌的小伙伴,你自己是怎样计算的?(给出活动时间)

学生活动后汇报归总。得出小数加法的计算方法。(教师可以板书)

教师补充讲清,直接用小数计算的书写格式。(强调格式)

2、试一试(用竖式计算下面各题)

4.5 + 2.3 0.9 + 6.2 14.1 + 3.6 2.08 + 0.49

3、师生小结,计算小数加法时要注意什么?

形成文字。计算小数加法时,要使相同数位对齐,也就是要把小数点对齐,从低位加起,加得的结果要对齐加数的小数点,点上小数点。

三、实践活动:

1、把自己的语文、数学课本的单价找出来,计算一下语文、数学两本书一共用多少元钱?

2、看够物信息,帮小强计算一共用去多少元钱。

面条一包 食盐一袋 火腿肠 味精一袋

1.86元 1.00元 5.06元 9.47元

四、巩固练习

1、判断正、误(并说出错误的原因)

2、选择正确的答案填在相应的括号里。

3、摘果游戏

说明(果树图上有小数的加法算式,谁计算结果正确,摘下的果子归谁。)

五、全课归结

1、通过这节课的活动,你学会了什么本领?

2、你在计算小数加法时,要注意些什么?

小数教教案篇3

教材分析:

人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。

学情分析:

根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:

图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。

教学目标:

1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。

2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。

3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。

教学重点:通过整理和练习,巩固本单元知识。

教学难点:通过整理和练习,对知识的进一步领悟。

教学预设:

一、梳理知识

1、回顾知识。

(1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)

(2)引导回顾:回忆一下,这一单元我们学了哪些知识?

根据生说师相机板贴知识点。

2、整理知识。

(1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?

(2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)

(3)回答一生,理解要求

评价:这样的介绍符合要求吗?

(4)知识归类:他用到了这儿的什么知识?

3、独立思考

(5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?

(6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。

学生记录。

师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。

(7)汇报,根据生说师相机板书内容。

预设:

①意义:3个0.1;画图;十分位上是3,个位是0等。

②大小比较:比0.2大比0.4小的一位小数。

③小数点的移动规律:如3的小数点左移一位是几。

④近似数:如0.29保留一位小数。

⑤单位换算:如300千克等于几吨。

(8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。

?设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】

二、查漏补缺

1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)

2、根据生说,课件相机出示相应内容并分析。

预设:

(1)小数与单位换算。

①出示错例。

②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?

学生总结方法,师板书。

③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。

④汇报,师相机书写过程。

(2)小数的近似数。

①出示错例。

②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?

生分析原因。

③引导总结:对于做这样的题你有什么要提醒大家的?

(3)小数的性质与大小比较。

①课件:恭喜你们,你们做得很棒!

②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?

③同桌交流:想好的跟同桌说一说。

④汇报。

(4)小数点的移动规律。

①课件:恭喜你们,你们做得很棒!

②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。

出示题,做题,问:仔细观察,你有什么发现?

(5)小数的意义和读写法。

①课件出示:找0、4题

②学生判断:图2、

③激疑:图1为什么不可以?(0.04)图3呢?(0.8)

④总结:都涂了4格,为什么表示的小数却不一样?

图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。

⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?

⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。

?设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】

三、巩固提升

1、猜数。

(1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。

(2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?

生猜。

师:有多少种可能?(无数种)

(3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?

生猜,师相机板书。

师:那这个数最小是几?

最大是几?(1、74,1、749……)(师板书)

师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)

师:那找得到这个最大的数吗?(找不到)

师:那有多少种可能?(无数种)

(4)第三猜:那再给你一个信息:它是一个两位小数。

生猜,师判断:大了,小了。

(5)揭晓答案:1.66

2、找位置。

(1)那你能在这条线上找到1、66的位置吗?

(2)那要准确地找到它,谁有好方法?

3、说关系。

(1)出示1、0、1、0、01。

(2)问:1、0、1、0、01之间有着怎样的关系?

?设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】

四、课堂小结

这节课我们是怎么复习的?对你以后的学习有什么启示?

?设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】

374650285750小数的意义和性质整理和复习

小数的意义和性质整理和复习

742950228600意义和读写

意义和读写

板书(部分):

63500057150

742950114300性质和大小比较

性质和大小比较

74295025400小数点的移动规律

小数点的移动规律

768350273050单位换算

单位换算

768350203200近似数

近似数

教学反思:

这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。

1、制定任务,高效梳理。

学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。

2、基于学情,有效复习。

复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。

小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。

本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。

这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。

3、精选练习,合理拓展。

复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的'数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。

小数教教案篇4

【教学内容】

人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。

【教学目标】

1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。

2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。

3、培养学生探究发现、类推迁移的数学学习能力。

【教学重点】

在学生初步认识分数和小数的基础上,进一步理解小数的意义。

【教学难点】

理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。

【教学准备】

米尺、多媒体课件、立方体教具。

【教学过程】

一、【课前铺垫、创设情景】

教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。

二、【新课讲授】

1、认识一位小数

今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!

(出示米尺课件)学生仔细观察,回答问题。

教学例1。

教师提问:一起来数数,把1米平均分成了多少份?

学生一起数,得出结论(10份)。

提问:因为1米=10分米,所以这一份是多长?

学生观察后回答:1分米

小结:我们把1米平均分成了10份,每一份是1分米。

提问:1分米是1米的几分之几?()

(1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)

教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)

想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)

由此得出:米=0.1米

(2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)

提问:谁能说说0.3米表示什么意思?

同样,可以得出:米=0.3米

(3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)

提问:谁能再来解释一下0.7米表示什么意思?

同理,可以写成:米=0.7米

(4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)

教师旨在引导,学生观察发现

师:课件显示我们刚才得到的`一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)

师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)

师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?

学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!

出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)

一起数数0.3米是由几个米组成的?(3个)

提问:那0.3里面有()个0.1?

这一段又是多长?(0.7米)

再来数数几个米组成0.7米?(7个)

提问:那0.7里面有()个0.1?

进一步强化训练:0.9里面有()个0.1?(9个)

请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)

提问:1里面有()个?(10个)

也就是说:1里面有10个0.1

提问:谁能告诉我1.2里面有()个0.1?(12个)

师:你是怎么想的?

教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1

师:这句话太重要了,谁能把它再说一遍!

点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)

反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?

2、认识两位小数

小小的米尺,大大的学问。

师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)

1厘米是1米的几分之几米呢?(米)

出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。

小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)

提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?

请大家翻开课本32面,把你的答案写在书上。

教师根据学生的回答,课件逐一出示答案。

师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)

师:请大家仔细观察,这次写出的都是几位小数?(两位小数)

师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)

师:那你发现了什么?

学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!

师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01

师:谁能把这句非常重要的话像老师这样说一说!

点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)

反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)

3、认识三位小数

师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?

学生分组讨论交流,小组选派代表发言。

发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米

提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?

学生总结发现:

分母是1000的分数,可以用三位小数来表示。

三位小数的计数单位是千分之一,写作:0.001

点击出示发现!你们个个都是自学小能手!老师为你们点赞!

4、概括:小数的意义

师:通过刚才的学习,我们知道了:

分母是10的分数,可以用一位小数来表示

分母是100的分数,可以用两位小数来表示

分母是1000的分数,可以用三位小数来表示

谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)

学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)

师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……

这就是小数的意义,请大家齐读一遍。

学生齐读意义,教师板书课题~小数的意义

师:同学们可真棒!自己总结出了小数的意义!

5、总结:小数的计数单位

师:通过刚才的学习,我们也知道了:

一位小数的计数单位是十分之一,写作:0.1

两位小数的计数单位是百分之一,写作:0.01

三位小数的计数单位是千分之一,写作:0.001

师:谁能尝试着把它们用一句话来总结一下?

学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)

师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。

师:这里的省略号表示什么意思?(说不完)看来同学们理解了!

6、小数相邻单位间的进率

(过渡)学习的过程就是不断地克服困难,战胜自我的过程。

师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?

教师出示正方体变形课件,逐步引导学生观察分析:

1里面()个0.1

0.1里面()个0.01

0.01里面有()个0.001

提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。

学生讨论发言。

小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。

师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?

学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)

请大家齐读一遍。

三、【巩固提升、练习反馈】

1.完成教材第33页“做一做”。(可以一题两问)

2.判断:争当合格小裁判(说出判断理由)

四、【课堂小结】

提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?

小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)

五、拓展延伸

板书设计

小数的意义:分母是10、100、1000……的分数,可以用小数来表示。

小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……

小数的进率:每相邻两个计数单位之间的进率是10。

小数教教案篇5

首先出个问题,假设给你一个小数(无限循环小数),你能说出小数点后第10000位的数字是几吗?10000位?是在开玩笑吗?数都要数好久。其实用心点的同学们就已经知道了,这个数字肯定是有一定的规律可寻的,不然,真的就是死记硬背的数学了。

每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才。

教案分析:

阿尔法趣味数学课程教案是通过对小学数学课本上的知识点分析和趣味故事相结合,让同学们感知到数学其实还挺有趣的。培养孩子学习数学的兴趣、逻辑思维能力和独立解决问题的能力。

教案要求及解读:

老师通过趣味小故事的形式引导同学们在游戏中学习。

教学目的:

了解和认识无限循环小数的意思及其特点,规律,学会在什么场景下使用循环小数;

了解除法中商的小数部分的特点。

适合年级:小学五年级

教学重点:认识循环小数。教学难点:循环小数的循环节和循环点。循环小数的意思:

一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。像:5.333…和7.14545…都是循环小数。一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节、例如:

5.333…的循环节是3。

7.14545…的循环节是45。

6.9258258…的循环节是258。

写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。例如:

教学过程:

老师:同学们,最近你的数学学习进步很大呀,我来考你们一道题吧。5÷7等于多少?

学生:这么简单呀,约等于0.71

老师:说准确点!小数点后第1000位的数字是几?

学生:啊!这个可难住我们了,到底是多少呀,老师给我们讲讲吧。

老师:这道题的得数是个无限循环小数:5÷7=0.714285714285......

循环小数是有循环节的,循环节首尾相接循环出现。仔细看"714285"这6个数字在不断循环。那循环节就是它们6个了!这样就好算第1000位是多少了。1000÷6=166……4,循环节在到第1000位的时候循环了166次,并余下4个数字,那么从循环节开始往后数第4位就是2。

学生:哦,也就是小数点后第1000位的数字应该是2.

老师:那我再问你们,前1000个数字的和是多少?

学生:是4496,哈哈,你考不倒我。这个得数是经过166次循环再加上余下的4位数字得到的。那么这个小数的循环节的和是7+144+2+8+5-27,那么166 × 27=4482;剩下的4个数字之和是7+1+4+2=14,所以前1000个数字之和就是4482+14=4496。

思维挑战:

你学会这种方法了吗?来试试吧:计算5÷13的商的小数点后面第1000位的数字是多少?

提示:解答这道题要注意:一是5÷13的商要算准确,否则就无法求出第1000位的数字;二是要找准商的循环节,看清循环节有几个数。

教案总结:

无限循环小数是由小数除法的商产生的,学习无限循环小数的前提是要掌握好除法,商和余数。

课后思考:

计算5÷13的商的小数点后面第10000位的数字是多少?

无限小数一定比有限小数大。

无限小数都是循环小数。

循环小数都是无限小数。

0.66666是循环小数。

一个小数不是有限小数,就是无限小数。

会计实习心得体会最新模板相关文章:

篮球比赛活动策划案模板6篇

团日活动策划案模板6篇

活动策划案通用模板优秀7篇

大学生活动策划案模板范文7篇

周年庆活动策划案模板7篇

大学活动策划案的模板6篇

社团活动活动策划案范文模板6篇

物理教教师工作总结5篇

暑假教教师培训心得体会推荐5篇

小学英语教教师工作总结5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    111910

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。